Draw Reflections In Lesson 4-7, you learned that a reflection or *flip* is a transformation in a line called the **line of reflection**. Each point of the preimage and its corresponding point on the image are the same distance from this line.

A reflection in a line is a function that maps a point to its image such that • if the point is on the line, then the image and preimage are the same point, or • if the point is not on the line, the line is the perpendicular

A', A", A"', and so on, name corresponding points for one or more transformations.

A is on line k.

A is not on line k.

To reflect a polygon in a line, reflect each of the polygon's vertices. Then connect these vertices to form the reflected image.

bisector of the segment joining the two points.

Example 1 Reflect a Figure in a Line

Copy the figure and the given line of reflection. Then draw the reflected image in this line using a ruler.

- Step 1 Draw a line through each vertex that is perpendicular to line *k*.
- Step 2 Measure the distance from point A to line k. Then locate A' the same distance from line k on the opposite side
- Step 3 Repeat Step 2 to locate points *B'* and *C'*. Then connect vertices *A'*, *B'*, and *C'* to form the reflected image.

AA'B'C' is a reflection of DABC over line to

GEOM 2-2 3.notebook October 09, 2019

GEOM 2-2 3.notebook October 09, 2019

Real-World Example 2 Minimize Distance by Using a Reflection

SHOPPING Suppose you are going to buy clothes in Store B, return to your car, and then buy shoes at Store G. Where along line s of parking spaces should you park to minimize the distance you will walk?

Understand You are asked to locate a point P on line s such that BP + PG has the least possible value.

Plan The total distance from *B* to *P* and then from *P* to *G* is least when these three points are collinear. Use the reflection of point *B* in line *s* to find the location for point *P*.

Solve Draw $\overline{B'G}$. Locate P at the intersection of line s and $\overline{B'G}$.

Check Compare the sum BP + PG for each case to verify that the location found for P minimizes this sum.

ex. 2 Joy wants to select a good location to sell tickets for a dance. Locate point P such that the distance someone would have to walk from Hallway A, to point P on the wall, and then to next class in Hallway B is minimized.

- 2 Connect A' with B to form A'B.
- 3 label the intersection of A'B with the wall as P.

Example 3 Reflect a Figure in a Horizontal or Vertical Line

Triangle *JKL* has vertices J(0, 3), K(-2, -1), and L(-6, 1). Graph $\triangle JKL$ and its image in the given line.

a. x = -4 line of reflection b. y = 2

Find a corresponding point for each vertex so that a vertex and its image are equidistant from the line x = -4.

Find a corresponding point for each vertex so that a vertex and its image are equidistant from the line y = 2.

Characteristics of a Reflection Reflections, like all isometries, preserve distance, angle measure, betweenness of points, and collinearity. The orientation of a preimage and its image, however, are reversed.

What type of isometry is a reflection?

Indirect isometry

ex. 3

Trapezoid RSTV has vertices R(-1, 1), S(4, 1), T(4, -1), and V(-1, -3). Graph trapezoid RSTV and its image in the given line.

Reflections in the x-axis, y-axis, and the line y = x

Graph the image of \triangle ABC after the transformation rx-axis. Label and state the coordinates.

Graph the image of △ABC after the transformation ry-axis. Label and state the coordinates.

Graph the image of △ABC after the transformation ry=x. Label and state the coordinates.

Based on the graph above, determine the Reflection Coordinate Rules?

$$(x, y) \rightarrow (x-y)$$

Reflection over the y-axis
$$(r_{y-axis})$$
:
 $(x, y) \rightarrow (-X, Y)$

$$(x, y) \rightarrow (-X, Y)$$

$$(x, y) \rightarrow (\underbrace{y, X})$$

ConceptSummary Reflection in the Coordinate Plane		
Reflection in the x-axis	Reflection in the y-axis	Reflection in the line $y = x$
P(x,y) $P'(x,-y)$	$P(x,y) \qquad P'(-x,y)$	$P(x,y) \qquad y = x$ $P'(y,x)$
$(x, y) \rightarrow (x, -y)$	$(x, y) \rightarrow (-x, y)$	$(x, y) \rightarrow (y, x)$

